TURNING CO2 INTO VALUE

FUELS & CHEMICALS FROM SOLAR ENERGY THE PHOTO2FUEL JOURNEY

6 AUGUST 2025

ORGANISED BY:

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

6th AUGUST 2025 – Final Conference

Aldo R. Reyes

Presentation Summary

- CO₂ valorisation context
 - CO₂ emissions
 - Current use of valorised CO₂
 - CO₂ as a feedstock
 - Acetic acid
- PHOTO2FUEL context
- Roadmap structure
- Roadmap: short term strategy (1-3 years)
- Roadmap: mid term strategy (3-7 years)
- Roadmap long term strategy (>7 years)
- Other parameters to be considered
- Other challenges and open questions
- Call to action

CO₂ emissions

Global CO₂ emissions, 1900-2021. Data sources: Our World in Data,

- Predictions of 2.8 3-2 °C warming by 2100 compared to preindustrial levels
- Ocean acidification
- Impact in biodiversity
- Climate change affections

However, predictions also show that using CO₂ valorisation can bring global warming only up to 1.5 °C

Adapted from *Pope et al.* (2025)

Current use of valorised CO₂

Adapted from *Pope et al.* (2025)

Approx. 200-250 Mt CO₂/Year used industrial applications

Region/Country	Annual emissions (Mt CO ₂)
China	12670
United states	4850
Europe	2620
India	2700
South and Central America	1170
Japan	1080

Adapted from The Global Economy. (2023)

25090 Mt CO₂/Year

Only ca. 07-08% of emitted CO₂ is valorised in industry

Current use of valorised CO₂

CO₂ utilization can make CO₂ capture more economically viable

Ideal target: global net-zero

Distribution of Venture Capital (2015-2023, ca. total >1 billion USD)

Adapted from *Pope et al.* (2025)

Adapted from *Pope et al.* (2025)

CO₂ valorisation context CO₂ as a feedstock

Key challenges

- CO₂ Thermodynamic stability
- Technology maturity
- High Energy demand

Most common Conversion paths

- Thermocatalytic
- Electrochemical
- Biological
- Photocatalytic

Acetic acid

Adapted from *Pope et al.* (2025)

Acetic acid, a critical commodity

Mostly produced and consumed in China (Prod: 16-18 Mt/year)

PHOTO2fuel context

Using modified Moorella Thermoacetica

Roadmap structure

Laboratory scale and system optimization

Short term (1-3 years)

Pilot scale, system adaptation and upgrading Mid term (3-7 years)

Industrial production, automation and partnership

Long term (>7 years)

Roadmap: Sort term strategy (1-3 years)

Laboratory scale and system optimization

Interface engineering and charge transfer tuning	Optimize band alignment
	Enhance light harvesting
	Optimize surface functionalization

Minimize ROS formation based on Irradiation

ROS mitigation and encapsulation

Test encapsulation strategy (hydrogels)

Test MOFs based technologies for upgrade cell longevity

High L

Low

High

Roadmap: Sort term strategy (1-3 years)

Laboratory scale and system optimization

Reactor design and irradiation optimization

Reactor miniaturization concepts

Optimize light distribution and gas exchange

Detail plan for upscale (incl. Financial and energetic studies)

High

Low

Medium

Cell viability, kinetic and metabolic studies

Optimize cell growing parameters

Time-resolved spectroscopy for unregulated metabolic routes

identify key reaction bottlenecks that affect scalability

High

Medium High

Mid term strategy (3-7 years)

Pilot scale and system adaptation and upgrading

Refine solar light concentration while minimize heating Litre-scale photobioreactor Advance encapsulation and anchoring of system to the construction and adaptation reactor Evaluate mild thermal conditions and electrochemical synergies

Medium

Develop and test continuous and scalable CO₂ feeding system CO₂ supply and improve mixing Adapt and improve gas-liquid mass transfer effects Medium Medium

Scale biohybrid preparation and protecting processes

Mid term strategy (3-7 years)

Pilot scale and system adaptation and upgrading

Semi-continous operation and monitoring and product prufication

Desing and test semi-continous operation modes

Deploy in-line sensor-based monitoring systems

Implement separation and purification methods at the pilot scale

High

High

Medium

Cost analysis and TRL validations

Cost analysis including also pre and post process steps

Demonstrate TRL5 successfully achieved (semiindustrial conditions)

High

Medium

Low

Long term strategy (>7 years)

Industrial production, automation and partnership

Modular photoreactors and CO₂ capture integration

Design and test industrial-scale photoreactors, modular panels and hybrid energy systems

Integrate CO₂ capturing units for self-supply

Develop immobilised biohybrid architectures

High

High

High

Catalytic operation synergies and automation

Automate biohybrid system production, separation and purification

Explore combination of different energy sources for multi-product valorisation if possible

High

High

High

Long term strategy (>7 years)

Industrial production, automation and partnership

LCA, safety and policy approvals	Ensure biosafety and regulatory compliance
	Regulatory aspects if genetic modified bacteria are used
	Tecno-economic and life cycle assessments to validate marketability

High

Medium

Low

Commercial partnership and TRL7	
achievement	

Align with credit carbon systems and policy innitiatives to reduce ecnomic barriers

Partner with chemical industry stakeholders

Prove stable yields, quality, predictability and competitiveness

High N

Medium

Low

Other parameters to be considered

Chemicals Quality

Products Separation

Financial and environmental profitability

Other challenges and open questions

- Do photo-based technologies have a real chance?
- How European and international policies should evolve for a quick and effective implementation of CO₂ valorisation routes?
- Will the INDUSTRY allow this evolution? Will INDUSTRY ease the pathway?
- What new enablers and blockers will be identified during the journey?
- Will the technology innovation level and the policy run at the same pace?

Call to action

Motivation and purpose: CO₂ levels at their record highs. Propose adaptations for important chemical processes displacing fossil-based CO₂

Team work: multidisciplinary collaboration at the industrial and administrative level with clear objectives.

Increase dedicated funding: more research in catalysts development and adaptations, plants and processes adaptation as well as market studies.

Policy alignment: Review carbon pricing regulations, integration of renewable energy sources in industry as well as green products certifications

Let's stop seeing CO₂ as a liability and start treating it as a raw material.

